Enhanced nitric oxide-mediated chemoreceptor inhibition and altered cyclic GMP signaling in rat carotid body following chronic hypoxia.

نویسندگان

  • L He
  • J Chen
  • X Liu
  • B Dinger
  • S Fidone
چکیده

Multiple studies have shown that chronic hypoxia (CH) elicits a time-dependent upregulation of carotid body chemoreceptor sensitivity in mammals. In the present study, we demonstrate that enhanced excitation is accompanied by a parallel increase of nitric oxide (NO)-dependent inhibition, which acts via a CH-induced modification of the normal mechanism in O(2)-sensitive type I cells. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), elicits a progressively larger increase in carotid sinus nerve (CSN) chemoreceptor activity following incremental increases in CH exposure lasting 1-16 days. The inhibitory effect of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), on CSN activity is enhanced following CH. However, the activation of soluble guanylate cyclase (sGC) by SNAP, assessed via production of cGMP, is impaired, along with decreased expression of sGC mRNA transcript. Inhibition of hypoxia-evoked Ca(2+) responses by SNAP is mediated via a cGMP/protein kinase G (PKG)-dependent mechanism in normal type I cells that is sensitive to the PKG inhibitor KT-5823, but following CH, inhibitory responses are minimally sensitive to PKG inhibition. The data are consistent with the hypothesis that CH hampers cGMP-mediated inhibition of type I cells in favor of an alternative mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene transfer of neuronal nitric oxide synthase to carotid body reverses enhanced chemoreceptor function in heart failure rabbits.

Our previous studies showed that decreased nitric oxide (NO) production enhanced carotid body (CB) chemoreceptor activity in chronic heart failure (CHF) rabbits. In the present study, we investigated the effects of neuronal NO synthase (nNOS) gene transfer on CB chemoreceptor activity in CHF rabbits. The nNOS protein expression and NO production were suppressed in CBs (P<0.05) of CHF rabbits, b...

متن کامل

Targeting arterial chemoreceptor over-activity in heart failure with a gas.

With an aging population the prevalence of heart failure (HF) continues to rise. In the United States almost 5 million people experience HF, often with a poor prognosis resulting in 20% of patients dying within 1 year and 80% mortality within 8 years.1 Although the mechanisms underpinning cardiac failure are not firmly established, several converging events ranging from depressed contractility ...

متن کامل

Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition.

In mammals, ventilation is peripherally controlled by the carotid body (CB), which receives afferent innervation from the petrosal ganglion and efferent innervation from neurons located along the glossopharyngeal nerve (GPN). GPN neurons give rise to the "efferent inhibitory" pathway via a plexus of neuronal nitric oxide (NO) synthase-positive fibers, believed to be responsible for CB chemorece...

متن کامل

Chronic hypoxia upregulates the expression and function of AT(1) receptor in rat carotid body.

In the present study, the effects of chronic hypoxia on the expression and localization of angiotensin II (Ang II) receptors are investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by immunohistochemistry. The effect of chronic hypoxia on the carotid body chemoreceptor activity was also examined by in vitro electrophysiology. Results from RT-PCR reveal...

متن کامل

Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 293 6  شماره 

صفحات  -

تاریخ انتشار 2007